Inject Vessels with Epoxy Using Compressed Air and a Simple Jig

D. J. Griffiths

Section of Anatomy, Department of Morphology, Genetics and Aquatic Biology, Norwegian School of Veterinary Science, Oslo, Norway

(received September 29, accepted November 23, 1998) Key Words: Polymer E20, Equipment, Cast, Compressed Air

Abstract

This short technical note describes a method of filling blood and other vessels with epoxy using a 100ml syringe barrel with a catheter tip. The plunger of the syringe is replaced by a rubber stopper connected to a source of compressed air. The stopper is held in place by a simple home-made jig. After the syringe is filled with epoxy and the system assembled and switched on, epoxy may be pumped into the specimen for any chosen pressure and time combination without a person needing to be in attendance.

Introduction

Coloured epoxies, such as Biodur™ E20 (Biodur, Rathausstrasse 18, 69126 Heidelberg, Germany), are excellent for casting blood vessels, bile ducts, the renal pelvis, and numerous other body cavities (Fromm et al., 1991; Riepertinger and Heuckendorf, 1993; Pretorius and Geyer, 1995). For injecting long and narrow vessel systems, the somewhat viscous nature of epoxy means that either very small syringes need be used repeatedly (Pretorius and Geyer, 1995) or the epoxy thinned with methyl-ethyl ketone (Fromm et al., 1991). The former method is labour-intensive and often messy, while evaporation of the latter reduces the strength of the cast and also its suitability for subsequent scanning electron microscopy. The following article describes a simple technique utilising compressed air to blow small or large volumes of undiluted epoxy into vessels in specimens.

Materials and Methods

A 100ml plastic syringe (Codan Medical ApS, Rodby, Denmark) with a catheter tip ideal for attaching a flexible silicon or rubber hose was used. The plunger was removed and a suitable rubber stopper was placed into the syringe barrel. A hole was drilled through the stopper and into this hole a 10mm diameter copper pipe was fed. The pipe was connected via a flexible hose to a supply of compressed air. An AT-piece (not pictured) was inserted into the air supply close to the syringe, and out of the side tube a separate rubber hose led to a simple U-shaped water manometer set up on a wall of the laboratory. In this way the air pressure in the syringe could be measured with precision.

The jig used (figure 1) consisted of a wooden base, two lengths of threaded rod topped with wingnuts, and a wooden plate that moved snugly along the threaded rod. A hole in the baseplate and a corresponding slot in the upper plate held the syringe and its rubber stopper with protruding air-line. The following article describes a simple technique utilising compressed air to blow small or large volumes of undiluted epoxy into vessels in specimens.

Materials and Methods

A 100ml plastic syringe (Codan Medical ApS, Rodby, Denmark) with a catheter tip ideal for attaching a flexible silicon or rubber hose was used. The plunger was removed and a suitable rubber stopper was placed into the syringe barrel. A hole was drilled through the stopper and into this hole a 10mm diameter copper pipe was fed. The pipe was connected via a flexible hose to a supply of compressed air. A hole was drilled through the stopper and into this hole a 10mm diameter copper pipe was fed. The pipe was connected via a flexible hose to a supply of compressed air. A hole was drilled through the stopper and into this hole a 10mm diameter copper pipe was fed. The pipe was connected via a flexible hose to a supply of compressed air.
Results and Discussion

At the very least this simple system provides a method of avoiding repeated and tedious pressing on a small syringe when injecting viscous solutions. However, since taking it into use other advantages have become apparent.

The first of these advantages is predictability, in that you know the exact pressure exerted on the epoxy. Since this pressure is constant for the entire injection time, the time-pressure combination can be correlated to the result obtained in the specimen. Once the most effective combination is determined, this can be used repeatedly and exactly, provided of course that the diameters and lengths of the hoses leading into the animal or specimen are not altered. Since the pressure loss along a length of hose (assuming laminar flow and all other factors constant) is proportional to the fourth power of the radius (Stephenson, 1969), halving the radius (for example) will produce a sixteen-fold increase in the resistance to flow and a great increase in the air pressure necessary in the syringe. It follows that the hose from the syringe into the specimen should be as short and as wide as possible.

The other advantage concerns time. With this method the epoxy can be pressed into the specimen right until it starts to harden, which in my experience with Biodur E20 is about 40 minutes. No time is lost in repeated disconnecting and refilling syringes, and no air is introduced unnecessarily into the system. The likelihood of vessel rupture is reduced.

This technique has to date been used for five specimens - two canine kidney pairs (via the aorta), the coronary arteries of a canine heart (via the aorta) and a dried porcine lung (via the truncus pulmonaris). Unless otherwise stated, Biodur E20/E12 was used with a syringe pressure of 1.5m of water for a timespan of some 20 minutes. For the kidneys, some 70 ml of epoxy were placed in the syringe and some 40 ml pumped into the organs. Figure 2 shows the result of one of these attempts. The epoxy has traversed the glomerulus and entered the efferent arterioles.

For the heart, 70 ml of epoxy were loaded but only 10 - 15 ml entered the tissue) the aortic valve closed immediately and no epoxy entered the ventricle). In the case of the dried porcine lung, some 350 ml of polyester resin were pumped in under pressure of 50 cm water and the interval of some 10 minutes, although here infiltration was poor due to the accumulation of numerous air bubbles in vessels of 5 - 7 mm diameter. Whether this is a characteristic of the polyester and/ or the lower infusion pressure has not been investigated, although none of the other specimens were troubled by air bubbles. A canine testicular artery was also attempted using 2.5m water pressure, but a rupture ensued at the level of the pampiniform plexus. It is suspected that poor washing (presence of blood clots) and excessive pressure contributed to this accident. This organ has not yet been repeated.

Bibliography